Physics Topic 5b: Forces in motion

1. Keywords	
Speed	Distance ÷ time. Scalar quantity
Velocity	Distance (in a certain direction) ÷ time. Vector quantity
Distance	How far and object moves. Scalar quantity
Displacement	The straight line distance from the start point to the end point. Vector quantity
Terminal velocity	The maximum speed reached when the forces are balanced

2. Typical speeds	
Walking	1.5 m/s
Running	3 m/s
Cycling	6 m/s
Sound	330 m/s

3. Calculating speed			
Symbol	Name	Calculated by	
S	Distance (m)	= speed x time	
٧	Speed/Velocity (m/s)	= distance ÷ time	
t	Time (s)	= distance ÷ speed	
S = v t			

4. D/T graph keywords			
Keyword	Meaning	Position on distance time graph	
Accelerate	Speeding up	1	
Decelerate	Slowing down	2	
Constant speed	Staying the same speed	3	
Stationary	Not moving	4	
Speed	Distance covered in a certain time	The steepness of the line	

5. Acceleration		
а	Acceleration (m/s²)	$a = \frac{\Delta v}{t}$
Δv	Change in velocity (m/s)	$\Delta v = at$
t	Time (s)	$t = \frac{\Delta v}{a}$
$a = \frac{\Delta v}{t}$		

7. Uniform acceleration		
$v^2 - u^2 = 2as$		
v	Final velocity (m/s)	
и	Start velocity (m/s)	
а	Acceleration (m/s²)	
S	Distance (m)	

8. Newtons laws of motion		
1 st	If the resultant force on an object is zero the object either remains stationary or at a constant speed	
2 nd	Force = mass x acceleration	
3 rd	When two objects interact the forces are equal and opposite	

9. Forces and braking		
Stopping distance	The thinking distance + braking distance	
Thinking distance	The distance travelled in the time it takes to react (typically 0.2s)	
Factors affecting thinking distance	 Tiredness Drugs Alcohol Distractions (phones) 	
Braking distance	The distance travelled under a braking force	
Factors affecting braking distance	 Road conditions (ice, water) Tyre condition Brake condition 	

10. Momentum (HT ONLY)			
р	Momentum (Kgm/s)	p=mv	
m	Mass (Kg)	m=p÷v	
V	Velocity (m/s)	v=p÷m	
Conservation of momentum	The total momentum before = the total momentum after		

11. Changes in momentum (PHYSICS ONLY) $F = \frac{m\Delta v}{\Delta t}$ $F \qquad \text{force} \qquad \text{N}$ $m\Delta v \qquad \text{Change in} \qquad \text{Kgm/s}$ $\Delta t \qquad \text{Change in time} \qquad \text{s}$ To reduce the force we need to extend the collision time